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Abstract

Synthetic cells are engineered vesicles that can mimic one or more salient fea-

tures of life. These features include directed localization, sense-and-respond

behavior, gene expression, metabolism, and high stability. In nanomedicine,

many of these features are desirable capabilities of drug delivery vehicles but

are difficult to engineer. In this focus article, we discuss where synthetic cells

offer unique advantages over nanoparticle and living cell therapies. We review

progress in the engineering of the above life-like behaviors and how they are

deployed in nanomedicine. Finally, we assess key challenges synthetic cells

face before being deployed as drugs and suggest ways to overcome these

challenges.
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1 | INTRODUCTION

Living cells offer many impressive capabilities that nanoparticle engineers often seek to imitate. These include directed
localization (e.g., chemotaxis), sense-and-respond behavior, gene expression, metabolism, and high chemical and serum
stability. Recent years have seen considerable advances in the bottom-up engineering of synthetic cells (SCs). Though
several aspects of this technology are still in their formative stages, this field has made substantial headway into the
realm of clinical applications.
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The phrase “synthetic cell” has been used widely and requires disambiguation. Here, we use “synthetic cell” to
mean an aqueous compartment bounded by either a polymer or lipid membrane that comprises molecular machinery
sufficient to mimic one or more of the above features of living cells. Moreover, in the context of medicine, these features
can induce desirable therapeutic outcomes. SCs can range from 100 nm to 10's of μm in size. However, most synthetic
cell studies work at scales >1 μm due to the technical difficulty of generating nano-sized vesicles. SCs can be built from
defined, synthetic components (“bottom-up”) or a combination of synthetic and cell-derived components (“semi-syn-
thetic”). Here, we consider “top-down” engineering or harnessing of extant living cells a distinct technology and beyond
the scope of this review.

The above definition of SCs emphasizes the compartmentalization of an aqueous interior. This is because physical
segregation of an aqueous core enables many of the functions of cellular life, including aqueous biochemistry involved
in everything from gene expression to enzymatic reactions. The presence of a distinct amphiphilic membrane structure
is also key, as it enables signal transduction, selective transport, and the anchoring of functional moieties on and within
the membrane. The aqueous interior and amphiphilic membrane distinguishes SCs from solid polymer nanoparticles,
lipid nanoparticles and micelles with hydrophobic interiors, which cannot perform many of these functions that are
critical to living system.

In terms of complexity, SCs can be thought of as an intermediate between passive nanoparticle drug delivery sys-
tems (e.g., liposomes) and engineered living cell therapies (e.g., Chimeric Antigen Receptor T cells or synthetic beta
cells for diabetes treatment [Chen et al., 2018]). Compared to nanoparticles, SCs generally have many more unique
components. This greater complexity makes them more capable than nanoparticles but also more difficult to manufac-
ture and control. Compared to living cells, SCs are much simpler and well-defined. Despite the incredible progress of
modern cell biology, cells are still in large part black boxes—they are incompletely understood and therefore inherently
unpredictable, especially when faced with the wide diversity of environments in human physiology. Hence, engineered
living cells present inherent risks when deployed as therapeutics. SCs, on the other hand, are assembled bottom-up
from known components and are therefore better defined and more predictable. Additionally, SCs will not replicate
(unless they are programmed to). Therefore, SCs can offer considerable safety advantages over living cells.

SCs can also perform tasks that living cells cannot (Figure 1). For example, SCs can utilize non-natural and toxic
molecules to a degree not possible in extant living cells (Martin et al., 2018). Non-natural amino acids have been shown
to endow proteins with valuable properties such as longer half-lives and enabling biochemistry (H.-N. Chang
et al., 2015; Gao et al., 2019). Highly toxic molecules that would otherwise kill living cells can also be produced with
in vitro transcription/translation (IVTT) systems encapsulated in SCs (Dondapati et al., 2018; Orth et al., 2011; Salehi
et al., 2016). Composing SCs of other exotic chemistry can therefore endow them with unique advantages in terms of
stability as well as the functions they can enact inside the body.

Additionally, while manufacturing of SCs presents its own challenges (more below), it promises certain advantages
over the manufacturing of engineered living cell therapies. Autologous cell therapies currently require extensive han-
dling. The process of purifying, engineering, amplifying, and re-administering autologous cell therapies makes their
manufacture extraordinarily expensive and time consuming (R. K. Iyer et al., 2018). Synthetic cells, on the other hand,
could in theory be generated at centralized facilities, lyophilized or otherwise preserved, and shipped to hospitals, much
like current biotherapeutics. Their manufacturing is scalable via microfluidics and can be generalized across different
indications and compositions. At the same time, their manufacture at a smaller scale would still allow customization
for personalized medicine.

Here, we review how the capabilities of synthetic cells can be leveraged for therapeutic effect. First, we describe the
structure and components of SCs and review some of the manufacturing approaches developed to date. We then discuss
how the life-like processes that can be engineered in synthetic cells—directed localization, sense and respond behavior,
gene expression, metabolism—can offer unique therapeutic strategies. Finally, we discuss both the technical and regu-
latory hurdles that challenge the development of SC therapeutics.

2 | COMPOSITION AND STRUCTURE

Synthetic cells mainly comprise a membrane and an internal payload. In the context of drug delivery, the membrane
has several key functions. First, it protects the payload from destabilizing factors in the external environment. Second,
it prevents the payload from getting out too quickly and triggering physiological responses (e.g., anaphylaxis). Third, it
concentrates the payload in the interior, enabling critical biochemistry or the delivery of the payload to its target at a

2 of 21 SATO ET AL.



high concentration. Last, the membrane itself allows for the anchoring of membrane proteins or other moieties that fur-
ther stabilize or functionalize the SC.

The composition of the membrane is critical to the SC's stability and function and must be carefully considered. The
membrane may comprise phospholipids, proteins (Huang et al., 2014), polymers (Kuiper et al., 2008), peptides (Fatouros
et al., 2014), colloids (S. Sun et al., 2016), virus membrane, or capsids (H. Liu, Zhigang, et al., 2015; Y. Wang, Uchida,
et al., 2020), or other amphiphilic molecules as well as small molecules such as cholesterol that have a stabilizing effect
(Briuglia et al., 2015). As such, the membrane composition can be tuned to endow the SC with varying stability in different
environments. This, in effect, enables the SC to “sense” the environment (see below). The composition of the membrane
can also affect the function of embedded proteins (Elmore & Dougherty, 2003). During formation of liposomes, the inner
and outer leaflets can be produced separately, making their composition unique (de Matos et al., 2019; Doktorova
et al., 2018). This enables unique functions to be incorporated at the interior and exterior of the membrane.

Inside a patient, SCs experience diverse, challenging environments. Once injected, a unique protein corona will form
around the SC (Francia et al., 2020). The composition of the protein corona is dynamic and depends on many variables, includ-
ing the membrane composition, charge, zeta potential, and size, among others (Baimanov et al., 2019; Giulimondi et al., 2019;
Pattipeiluhu et al., 2020). Undecorated SCs are typically recognized as nonself and cleared by the reticuloendothelial system
(RES), mainly in the liver and spleen (Sercombe et al., 2015). Once opsonized, the SCs are recognized by macrophages and
cleared via phagocytosis (Sercombe et al., 2015). SCs can also be damaged via enzyme activity, which further reduces their
half-life. The use of PEG to shield the outside of the liposome from the surrounding matrix has been a highly successful strat-
egy in lengthening nanoparticle half-lives in vivo (Maruyama et al., 1992; Photos et al., 2003). Many strategies have been devel-
oped to improve on current shielding effects (Boyer & Zasadzinski, 2007; Gulati et al., 2018; He et al., 2019).

FIGURE 1 Comparison of synthetic cells to other drug delivery systems. Synthetic cells tend to fall between liposomes and living cells

in terms of complexity. Their capabilities extend beyond those of liposomes but cannot match the sustained, nuanced behaviors of living

cells. This relative simplicity also endows them with advantages, such as complete programmability and zero risk of uncontrolled replication
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The interior of the SC contains the payload, which can be drug or aqueous solutions that further endow the SC with
function. In the simplest case, the compartment houses only a small molecule drug to be delivered to the site of action.
In one of the most complex cases, the compartment houses an IVTT reaction mixture that can generate genetically
encoded RNA or protein (Silverman et al., 2020). In some cases, SCs can house entire particles, vesicles (N.-N. Deng
et al., 2017), or condensates (S. Liu, Zhang, et al., 2020; Niederholtmeyer et al., 2018) that can further endow the SC
with functions such as sensing, metabolism, (Leduc et al., 2007) and movements (more below; Siton-Mendelson &
Bernheim-Groswasser, 2016).

A variety of methods have been developed to manufacture synthetic cells. These include thin-film hydration
(H. Zhang, 2017), reverse emulsion (Huang et al., 2013; Pautot et al., 2003; Thompson et al., 2015), electroemulsion
(Angelova & Dimitrov, 1986), and others (Fatouros et al., 2014; Y. Hu & Qiu, 2019; H. Liu, Zhigang, et al., 2015).
Recently, microfluidic platforms and other techniques have been developed to improve the efficiency, speed, and reli-
ability of SC generation: electroformation and hydration (Girard et al., 2004), extrusion (Dittrich et al., 2006), hydrody-
namic focusing (Jahn et al., 2004), pulsed jetting (Funakoshi et al., 2007; Gotanda et al., 2018; Kamiya et al., 2016),
double emulsion templating (Shum et al., 2008), transient membrane ejection (Matosevic & Paegel, 2011), droplet emul-
sion transfer (Ota et al., 2009), reverse emulsion (cDICE; Abkarian et al., 2011), droplet-supported dGUV (Haller
et al., 2018; Weiss et al., 2018), octanol-assisted liposome assembly (Deshpande et al., 2016), wedge splitting
(Deshpande et al., 2018), and toroidal mixing (Webb et al., 2020). This rapid innovation suggests that many hurdles to
microfluidic manufacturing may soon be overcome, which could prove catalytic to the field (Shah et al., 2020). The syn-
thetic cells that result from these processes tend to range from 500 nm to several tens of microns in size. The larger the
particle, the faster it is cleared from the body, so therapeutic nanoparticles are generally made as small as possible, on
the order of 10–100 nm (Hoshyar et al., 2016). The more complicated the SC composition, the more difficult the
manufacturing process becomes and places considerable technical and cost constraints on SC therapeutics.

3 | APPLICATIONS OF SYNTHETIC CELLS

How synthetic cells are utilized in nanomedicine is determined by their capabilities (Figure 2). Life-like capabilities that
can be engineered include directed localization, sense-and-respond behavior, gene expression, metabolism, and high
in vivo stability. Applications of these properties range from diagnostics to therapeutics.

FIGURE 2 Life-like functions of synthetic cells in nanomedicine. Synthetic cells are engineered with various chemical tools to mimic

one or more functions of living cells. The physical properties of the SCs affect both their stability and localization through the enhanced

permeability and retention effect
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3.1 | Directed localization

A key strategy of living things is to move toward resources that benefit them. Similarly, there is great value in engineer-
ing synthetic cells that move to or localize at a target site. This physically concentrates SC's activity at the target and
reduces off-target toxicity. Targeted localization can be accomplished either actively (by energy-consuming movement)
or passively (by increasing their affinity to the target tissue).

Significant progress has been made in endowing SCs with active chemotactic systems. While liposomes have been
used to study natural systems of cell locomotion, these systems have proven difficult to employ due to their complexity
(Pontani et al., 2009; Siton-Mendelson & Bernheim-Groswasser, 2016). Recently, relatively simple synthetic systems
that leverage biophysical principles have provided more traction (Gentile et al., 2020). Conjugation of enzymes to the
surface of liposomes has been shown to endow them with the ability to move up or even down a pH or metabolite gra-
dient (Ghosh et al., 2019; Hortel~ao et al., 2020; Somasundar et al., 2019). This strategy has also proven effective in
polymersomes (J. Wang, Jelle Toebes, et al., 2020). Battaglia and colleagues created polymersomes with asymmetrically
thick membranes that use encapsulated enzymes to generate a motor force (Joseph et al., 2017). Another type of
polymersome used a platinum nanoparticle to catalyze peroxide oxidation to chemotax toward neutrophils (Peng
et al., 2015). Other mechanisms for directed chemotaxis include the conjugation of complementary DNA oligomers or
light-activated protein binders to a surface (Bartelt et al., 2018; Pan et al., 2019). However, such strategies are more diffi-
cult to implement in vivo. Another method for directed localization is the conjugation of nanoparticles to living cells as
“cellular backpacks” (Jones et al., 2017; Klyachko et al., 2017; Layek et al., 2018; Xie et al., 2017), but this does not
require life-like behavior from the nanoparticle itself.

Passive targeting can be accomplished by increasing the affinity of SCs to the target tissue while relying on diffusion
and circulation to do the work of carrying them to the tissue. In these cases, the surface of SCs can be modified with
polymers, protein ligands, or antibodies that increase their targeting specificity (De Leo et al., 2018; J. Cao et al., 2018;
Kim et al., 2019). When multiple targeting moieties are used, the specificity of the targeting increases (Gray et al., 2013;
P. Guo et al., 2019; Nikkhoi et al., 2018; S. Oliveira et al., 2010; Qu et al., 2014). While implementing these strategies,
engineers must carefully consider the conjugation chemistry and orientation of the targeting molecules.

The physical properties of synthetic cells can also passively target them to specific tissues. For example, the small
size of nanoparticles tends to concentrate them in tissues in which the enhanced permeability and retention (EPR)
effect is observed, such as tumors and inflamed or otherwise damaged tissue (Allen & Cullis, 2013; Lammers
et al., 2012; Lobatto et al., 2015; van den Hoven et al., 2011). However, recent work has shown that the EPR effect is
dynamic and depends greatly on the composition and structure of the tissue (Danhier, 2016; J. Fang et al., 2020; Natfji
et al., 2017). As another example, the strong positive charge of cationic lipid nanoparticles leads them to be taken up by
the liver at high efficiencies (Witzigmann et al., 2020). This has made cationic lipid nanoparticles excellent delivery
vehicles for nucleic acid-based gene therapies such as Patisiran (Adams et al., 2018).

Another approach to achieve localization is to coat nanoparticles with natural membranes (de �Avila et al., 2018).
For example, nanoparticles decorated with red blood cells (RBCs) membranes can target macrophages (Wan
et al., 2018). To target cancer cells, nanoparticles can be decorated with cell membranes of platelets (Sarkar et al., 2013).
Platelet membranes can be additionally labeled with anti-CD22 monoclonal antibodies to precisely deliver drugs to
tumor cells (Q. Hu et al., 2015; P. Xu et al., 2017). As an alternative anti-cancer approach, one can use cancer cell mem-
branes to coat nanoparticles that will be presented to antigen-presenting cells and promote anticancer immune
response (R. H. Fang et al., 2014).

3.2 | Sense and respond

Living organisms can sense key environmental cues and subsequently respond with the appropriate action. Such seem-
ingly “smart” behaviors are key to survival and are a highly desirable function in nanomedicines for several reasons.
First, they enable more precise delivery to target tissues. Second, they enable more “analog” responses in which the out-
put can be titrated to the strength of the input signal, thereby avoiding undue toxicity in neighboring tissue. The land-
scape of such “smart” sensing in vesicles has been extensively reviewed elsewhere (Abraham et al., 2018; Leduc
et al., 2007; Majumder & Minko, 2020; Torchilin, 2014).

Sense-and-response functions can be facilitated directly via changes in SC membrane structure. Membranes have
been composed of molecules sensitive to temperature (Jose et al., 2019; F. Liu, Kozlovskaya, et al., 2015; Needham
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et al., 2000; Ta et al., 2014; Tagami et al., 2011; Xi et al., 2020; Yatvin et al., 1978), light (Carter et al., 2014; Enzian et al., 2020;
D. Luo et al., 2016; Miranda & Lovell, 2016; Peyret et al., 2017), magnetism (Amstad et al., 2011; Babincov�a et al., 2002; Geilich
et al., 2017; H. Guo et al., 2015; H. Oliveira et al., 2013), acoustics (Z. Deng et al., 2016; Rwei et al., 2017; Shekhar et al., 2017),
pH (Aghdam et al., 2019; De Leo et al., 2018; Naziris et al., 2017), redox states (Chi et al., 2017; Mirhadi et al., 2020; X. Yin
et al., 2017), and enzymes (Haas et al., 2015; Thamphiwatana et al., 2014). By combining these materials, the membrane can
sometimes be made sensitive to multiple types of stimuli (S. Feng et al., 2019; Tran et al., 2017), enabling even more precise
targeting. The major limitation of these materials is that few respond to the specific molecules of interest, such as certain cell
surface receptors or cancer metabolites. For this, more specific sensors such as protein receptors are required.

Sensing can also be accomplished by membrane-embedded amphiphiles or proteins that are sensitive to specific
molecules or conditions. These can transduce detected signals into the interior of the SC through various mechanisms
(Langton, 2020). Protein and peptide pores that respond to osmotic pressure, heat, pH, and electrical potential by creat-
ing selective and nonselective pores have been shown to work in liposomes (Aimon et al., 2011; Garamella et al., 2019;
Kisovec et al., 2017; Kreir et al., 2008; Louhivuori et al., 2010; Yanagisawa et al., 2011). One group developed a
membrane-spanning amphiphile that responds to changes in pH or protein unbinding by localizing at the interior leaf-
let of the liposome and inducing catalysis that results in the release of drug (Ding et al., 2019; Langton et al., 2017). Sev-
eral bacterial 2-component systems (Ravikumar et al., 2017) have been functionally reconstituted in liposomes (Ito
et al., 2009; Jung et al., 1997; Pflüger et al., 2018; Sanowar & Le Moual, 2005), though none of them have been used to
induce downstream protein production. Additionally, few other natural or engineered protein transducers (e.g., the
SynNotch receptor; Morsut et al., 2016) have been successfully tested in synthetic cells. This speaks to the sensitivity
and complexity of many membrane-bound protein transduction systems and the difficulty with which they can be
implemented in synthetic systems.

Another strategy is to embed nonspecific, permanently open pores into the membrane to enable passage of small
molecule signals that then stimulate activity inside the SC. To that end, Staphylococcus aureus α-hemolysin has become
a favorite tool for synthetic cell engineers due to its ability to spontaneously insert into a wide diversity of membranes
and form nonspecific pores. This has been used to allow nutrients (Noireaux & Libchaber, 2004), chemical inducers
(e.g., IPTG; Lentini et al., 2014), and other small molecules (Soga et al., 2020; Wu et al., 2011) to traffic the
SC. Furthermore, SNAREs and DNA oligos have been used to facilitate SC fusions (Schuette et al., 2004; W. Xu
et al., 2015) and thereby deliver molecular messengers into the interior of the target SC. Once inside the SC, these mes-
sengers can then induce catalysis or even protein production via gene expression.

Transcription factors, RNA riboswitches, and enzymes can also act as sensors inside the SC compartment. These
sensors are limited to sensing the interior of the SC, so only molecules that can pass through the membrane or pore can
be detected. Enzymes will detect their substrates, and the resulting reactions can change the ambient conditions, such
as the pH (Peters et al., 2015). Various transcription factors and riboswitches that are sensitive to the presence of diverse
small molecules (Dwidar et al., 2019; X. Liu, Silverman, et al., 2020; Salehi et al., 2017; L. Zhang, Guo, et al., 2020) and
even light (Schroeder et al., 2012; P. Zhang, Yang, et al., 2020) can be used to control transcription and translation in
SCs (see below). Combining sensor signals into transcriptional logic can enable powerful programming of Boolean
behaviors (Adamala et al., 2017; S. Iyer et al., 2013; Shis et al., 2014). Communication between SCs and natural living
cells has also been engineered and can give rise to complex interactions between synthetic and natural populations
(Lentini et al., 2014, 2017). Furthermore, the communication that results from mass exchange and sensing among SCs
enables the formation of complex multicellular “synthetic tissue” (Adamala et al., 2017; Aufinger & Simmel, 2018; Ding
et al., 2019; Niederholtmeyer et al., 2018; Schwarz-Schilling et al., 2016; T.-Y. D. Tang et al., 2018; Toda et al., 2018;
Villar et al., 2013). Transcriptional and translational responses to chemicals, however, are relatively slow compared to
other sensing mechanisms. To program rapid responses such as those needed for a SC-based bionic jellyfish (Nawroth
et al., 2012), electromechanical sensors and actuators still need to be developed.

3.3 | Gene expression

Another powerful capability of synthetic cells is their ability to express genes. Producing protein or small molecules in
situ is advantageous in drug delivery when the drug is unstable, needs to be titrated or is so reactive that it would kill
living cells. Through the action of encapsulated IVTT reaction mixture, SCs can produce RNA, proteins, or even small
molecule drugs in situ. For this, nucleic acids encoding the desired gene must be co-encapsulated. IVTT reaction mix-
tures may include purified cell extract (Kwon & Jewett, 2015; Z. Z. Sun et al., 2013) or defined mixtures of recombinant
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protein such as the PURE system (Y. Shimizu et al., 2001; Y. Shimizu & Ueda, 2010; Lavickova & Maerkl, 2019). Gene
expression can be induced when a triggering signal is sensed (see above). RNA that is produced could serve as a diag-
nostic signal that can be detected by sequencing RNA extracted from whole blood (Pös et al., 2018). Translated proteins
can be enzymes that together comprise a metabolic pathway that generates a small molecule drug (Dudley et al., 2016;
Grubbe et al., 2020). SCs can also synthesize membrane proteins that will spontaneously insert into membranes and act
as uptake signals to target cells. (Kaneda et al., 2009; Lu et al., 2019).

Previously, in situ protein production could only be accomplished by living cells. These were delivered into the body
encapsulated in polymer membranes, where they could survive a long time while ameliorating chronic conditions such
as diabetes (Calafiore et al., 1999; de Vos et al., 2002; Lim & Sun, 1980; Soon-Shiong et al., 1994; Y. Sun et al., 1996),
neurological diseases (Bloch et al., 2004), hemophilia (Basic et al., 1996), or cancer (Löhr et al., 2001) and are reviewed
elsewhere (T. M. S. Chang, 2005). Recent development of synthetic cells that encapsulate IVTT reactions offers an alter-
native approach to encapsulated whole cells. Schroeder and colleagues pioneered SC therapy by demonstrating that
liposomes containing IVTT could be used to synthesize anti-cancer proteins inside tumors. In this work, they showed
that synthetic cells producing Pseudomonas exotoxin A killed most cancer cells in culture and caused robust apoptosis
when injected into 4 T1 tumors in mice (Krinsky et al., 2018).

Beyond its utility in direct therapeutic intervention, cell-free gene expressions has enabled other biomedical technol-
ogies and novel research tools. For instance, the high stability of freeze-dried IVTT reactions has enabled the develop-
ment of on-demand biotherapeutic manufacturing platforms (Adiga et al., 2018; Adiga et al., 2020; Jaroentomeechai
et al., 2018; Pardee et al., 2016). Another example is liposome display, a technology that uniquely enables in vitro selec-
tion and directed evolution of protein pores (Fujii et al., 2014; Uyeda et al., 2016). Membrane-bound IVTT protein pro-
duction can also control the orientation of integral membrane proteins (Ando et al., 2018; Ohta et al., 2016). Challenges
these technologies still face include relatively low titers of protein produced, reproduction of critical post-translational
modifications, and the limitations on controlling the insertion and orientation of membrane proteins. Nonetheless, due
to the close ties between the fields of cell-free biochemistry and synthetic cell engineering, each will doubtless benefit
from the other's continued advancement.

3.4 | Metabolism

Living cells maintain their functions through active metabolism. This allows them to act against entropy repeatedly or
continuously over extended periods of time, a behavior that is challenging to engineer in nanoparticle drug delivery sys-
tems. SCs, however, can be loaded with complex biochemistry that can mimic many of the metabolic processes that liv-
ing cells perform. These include production of energy molecules such as ATP, the regeneration of essential cofactors, or
chemical transformation of target metabolites. The value of this is both to sustain the therapeutic function of the SC as
well as directly metabolize toxic metabolites.

By actively generating ATP or other energy molecules, SCs can maintain a sustained response instead of generating
only a short burst of activity from the ATP encapsulated during production. Several different approaches have been
taken to endow SCs with the ability to generate ATP. A common strategy is to create a proton gradient that can then be
used by ATP synthase to drive ATP production. To generate the proton gradient, light-activated bacteriorhodopsin
(Z. Chen et al., 2019; Choi & Montemagno, 2005; Dhir et al., 2018) or other proton pumping systems (Altamura et al.,
n.d.; Cladera et al., 1996; X. Feng et al., 2016; Steinberg-Yfrach et al., 1998) can be embedded in the membrane. The
resulting light-dependent ATP synthesis can then drive IVTT protein production (Berhanu et al., 2019) or other ATP-
dependent processes. Though this approach has been fruitful, it is challenging to implement in vivo because light only
penetrates a few millimeters into the skin (Sabino et al., 2016). Instead, ATP synthesis can be driven via catabolic chem-
istry on ambient energy-rich molecules (Biner et al., 2020; Calhoun & Swartz, 2005; Caschera & Noireaux, 2015;
Jewett & Swartz, 2004). The feedstocks for these pathways are also substantially cheaper than the high-energy mole-
cules used in some batch reactions.

Regeneration of cofactors such as nicotinamide adenine dinucleotide phosphate is often essential to maintain bio-
chemical reactions. This can be accomplished by encapsulating enzymes that catalyze the regenerating reaction
(Meeuwissen et al., 2011). Hirst and colleagues recently demonstrated sustained ATP synthesis by coupling ATP
synthase to NADH oxidation (Biner et al., 2020). Integrating novel ways to import or regenerate cofactors and other
reagents is critical for longer sustained reactions in synthetic cells.
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Chemically transforming metabolites can provide vital therapeutic benefits. Vesicles that contain enzymes have
been developed for therapeutic application since the 1960s. Seminal work by Thomas Chang demonstrated that com-
partmentalized enzymes could provide therapeutic effects in animals lacking normal enzyme activity (T. M. S. Chang &
Poznansky, 1968). Since then, therapeutic encapsulations of urease (Cattaneo & Chang, 1991; Gu & Chang, 1990; Lvov
et al., 2001; Miele et al., 2020), catalase (Shi et al., 2020; R. Zhang et al., 2017), superoxide dismutase (Niesman
et al., 1997; Riedl et al., 2005; Shazeeb et al., 2014), β-galactosidase (Rao et al., 1994), bacterial DNA repair enzymes
(Berardesca et al., 2012; D. Yarosh et al., 1996; D. B. Yarosh et al., 2019), alcohol oxidases (Pratsinis et al., 2017;
C. Lizano et al., 1998; Whitmire et al., 1991), glucose oxidase (S. Liu, Zhang, et al., 2020) among others, have opened
doors to novel therapies. Many of these formulations aim to remove membrane-permeable metabolites from the body.
Pratsinis et al. employed liposomes bearing either alcohol oxidase or catalase in their membranes in peritoneal dialysis
to remove ethanol from the blood of rats (Pratsinis et al., 2017). This work follows older efforts in which alcohol dehy-
drogenase and aldehyde dehydrogenase are encapsulated together to break down ethanol in vivo. In these systems,
another enzyme (e.g., malate dehydrogenase) is used to regenerate the NAD+ cofactor required to maintain the oxida-
tion reaction, highlighting the importance of cofactor regeneration to maintaining high catabolic rates (Campbell &
Chang, 1978; T. M. S. Chang, 1987; Carmen Lizano et al., 2001).

Encapsulated enzymes provide value to an impressive diversity of indications. A recent clinically tested example
include Lipoxysan, a transdermal liposomal encapsulation of superoxide dismutase, which was recently tested in
Peyronie's disease in Phase 2 clinical trials (Riedl et al., 2005). Mann and colleagues demonstrated that complex assem-
blies of glucose oxidase-containing coacervate and hemoglobin-containing RBC-derived membranes were able to gener-
ate nitric oxide in vivo, inducing vasodilation (S. Liu, Zhang, et al., 2020). An example in which SCs serve to aid in
diagnosis is in the work by Molina and colleagues. In this work, the authors generated different SCs containing mix-
tures of three or more different enzymes. Based on the metabolites present, SCs would generate different colored prod-
ucts. Incubating these SCs in urine aided in the diagnosis of prediabetic states in patients (Courbet et al., 2018).

Multilamellar liposomes, vesosomes, and different species of liposomes can work together to control reactions.
Incompatible enzymes can be separated in defined compartments allowing the spatial organization and segregation of
the multistep tandem reaction (Klermund et al., 2017). Different liposomes containing varied enzymes can be con-
nected via ɑ-hemolysis channels. Polymer SCs containing two distinct populations of enzyme-encapsulating vesicles
have been demonstrated to function inside living cells (Godoy-Gallardo et al., 2017). To prevent the deactivation of cata-
lysts in water or avoid unwanted cross-reactions, catalysts are often site-isolated in nanopockets or separately stored in
compartments. These examples show that control of the localization of enzymes within an SC can be as valuable to the
SCs function as the enzyme activity itself.

3.5 | High stability

One of the most desirable characteristics of living cells is their ability to remain intact in the blood for long periods of
time. Nanoparticles, on the other hand, are typically less stable and are rapidly cleared by the RES (Sercombe
et al., 2015). This is typically due to both their physical nature (large, spherical, and stiff objects are more quickly
removed from the blood) and to the fact that they do not display proteins that mark the nanoparticle as the body's own
cell (F. Chen et al., 2017; Vu et al., 2019; Zahednezhad et al., 2019).

Numerous strategies have been taken to endow nanoparticles with longer half-lives in blood. The decoration of the
particles with polyethylene glycol (PEG) is perhaps the most successful “stealth” strategy. PEGylation, however, is fall-
ing out of favor due to the production and presence of anti-PEG antibodies (L. Yin et al., 2015), PEG tissue accumula-
tion (Lane et al., 2017; Rippe et al., 2019), evidence of lack of PEG degradation, potentially creating vacuoles (Baumann
et al., 2014; Ivens et al., 2015), and alteration of enzyme activity (Leuzzi et al., 2016). As such, alternatives to PEG such
as heparosan are being developed (Lane et al., 2017; Rippe et al., 2019).

Decoration of particles with membranes derived from living cells is a powerful strategy to shield nanoparticles. This
“semi-synthetic” approach, pioneered by Hu and colleagues, has proven highly versatile (C-M. J. Hu et al., 2011). All
manner of cell membranes and cell membrane proteins have been used to coat nanoparticles and SCs (H. Cao
et al., 2016; Corbo et al., 2017; Gao et al., 2015; C-M. J. Hu et al., 2013; Liang et al., 2018; L. Luo et al., 2017; Pitchaimani
et al., 2018; J. Tang et al., 2017). This effectively shields the SCs from the RES and endows them with some of the signal-
ing properties of the cells from which their borrowed membranes derive. As mentioned above, this strategy also enables
targeting.

8 of 21 SATO ET AL.



4 | CHALLENGES FACING SYNTHETIC CELL THERAPEUTICS

The field of synthetic cell engineering is relatively new, and many challenges still remain to be solved or even identified.
These challenges include need for molecular tools, integration of disparate technologies, difficult manufacturing, and
regulatory frameworks that disfavor complex drug formulations (Figure 3).

To coordinate release of therapeutic agents at the right location (e.g., at a tumor), more robust sense and respond
mechanisms are needed. Currently, there is a relative lack of sensors that activate SCs in response to specific molecules,
such as membrane proteins overexpressed on cancer cells. Such tools are now readily available in living cell therapies,
such as CAR-T cells. Transferring natural membrane transduction systems to synthetic membranes is difficult due to
their size, complexity, and requirements for post-translational modification and membrane insertion machinery. While
bacterial transduction systems are smaller and relatively more robust proteins, they are likely immunogenic and cannot
recognize eukaryotic membrane proteins. To enable reliable sensing of eukaryotic molecular markers of disease, a con-
certed effort is needed to engineer membrane transduction systems that function specifically in SCs.

A similar problem is the limited repertoire of trans-membrane channels available in synthetic cell systems. Living
cells tightly control the flow of molecules in and out of the cell through channel proteins or membrane budding mecha-
nisms. SCs, however, currently lack most of these systems. This is reflected in the prolific use of ɑ-hemolysin, a simple
and robust bacterial toxin that enables passive transport of small molecules. Only a few active transporters have been
demonstrated in synthetic cells, including proteins as complex as ATP synthase. If more reliable membrane transporters
could be identified and engineered to spontaneously insert into the membrane in the desired orientation, it would
greatly broaden the sensing and delivery repertoire of SCs.

An issue for the entire field of synthetic cell engineering, including all therapeutic applications of this technology, is
the integration of subsystems into one robust entity. As described in earlier sections of this review, many SC subsystems
have been developed to demonstrate specific functionalities. Because each subsystem is engineered ad hoc, it is often
difficult to reconcile their diverse chemistries and structures. To address this, several approaches can be taken. First,
engineers in the field could standardize the chemical and structural framework in which they develop SCs. To encour-
age this, funding agencies could require adherence to these frameworks when it is sensible. Second, subsystems could
be engineered with integration in mind by reporting subsystem performance across a variety of contexts. Last, computa-
tional models rooted in empirical data could be developed to guide the integration, much like what was done to guide
the integration of synthetic genetic circuits (Nielsen et al., 2016).

FIGURE 3 Barriers to synthetic cell (SC) use in nanomedicine. Most fundamentally, new innovations and solutions are needed to

endow SCs with modular functions that can perform reliably in physiological conditions. Next, production and cost barriers need to be

addressed. Finally, therapeutic SCs will encounter regulatory hurdles that may require adapting current frameworks
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To use synthetic cells as human therapeutics, other issues will need to be solved as well, like the toxicity of cell-free
IVTT systems. While defined systems such as PURE contain mostly purified proteins, cell-derived fractions of ribo-
somes still contain some amount of endotoxins (i.e., lipopolysaccharides), which are highly pyrogenic. So far, only
direct tumor injection was demonstrated as a method for localizing synthetic cells into a solid tumor in mice (Krinsky
et al., 2018), and there is a relative lack of available data on half-lives and dose-dependent toxicity of synthetic cell for-
mulations in animals.

As therapeutic applications of synthetic cells progress through foundational research and commercial R&D pipe-
lines, the field will need to face technical challenges related to scaling up production of those novel therapeutics.
Among those challenges, two areas present the most well-defined focus points: the compartment and the chemicals
inside it.

Scaling up manufacturing of lipid vesicles to create membrane encapsulating synthetic cells will require progress in
current microfluidic technology, or perhaps development of entirely new class of liposome formation technologies. Syn-
thetic cells are typically larger than liposome drug delivery vehicles (single microns vs. tens of nanometers in diameter),
and enzymes encapsulated inside synthetic cells cannot be encapsulated via remote loading used for some liposomal
drugs. This creates a need for a whole new class of reliable, reproducible and scalable encapsulation techniques.

Similarly, producing large amounts of proteins and small molecules needed to provide therapeutic quantities of syn-
thetic cells might require adjustment in supply chains. Production of cell-free protein expression systems is already scal-
able to 100-liter reaction volumes (Zawada et al., 2011), but availability of certain high value reagents remains a
limiting step. We as a field anxiously await the invention of “PURE that makes PURE”—a cell-free IVTT reaction that
can make every one of its own functional components and need little more than raw material as feedstock—as an ideal-
ized solution to the scaling problem.

Once synthetic cell technologies pass into animal testing, the need to fulfill FDA approval requirements will become
critical. Currently, there are few guidelines for developing therapiesas molecularly complex as synthetic cells. FDA
approval is granted either for drugs with precisely controlled chemical composition, or for natural cell therapeutics.
Synthetic cells, being made from synthetic components but not being descended from known living cells, may require a
new framework by which such systems are evaluated. Uniformity of the formulation will remain critical, putting pres-
sure on the above mentioned supply chain and scalability of membrane formulations. The FDA is already aware of the
needs that might arise with progress of novel therapies using untested chassis, facilitating development of new oversight
rules through the FDA Emerging Technologies Program. (Center for Drug Evaluation and Research, 2019) It will be
critical that the synthetic cell community works closely with regulatory agencies to develop a supply pipeline and draft
new frameworks for the testing and eventual deployment of those therapies for patient use.

5 | DISCUSSION AND OUTLOOK

Many have noted in recent years that as increased resources are devoted to development of drugs, ever fewer result in
approved therapies. (Scannell et al., 2012) This phenomenon, known as Eroom's law (the reverse of Moore's law), high-
lights the need for new therapeutic modalities and approaches. Here we describe how synthetic cells offer a unique,
engineerable platform for achieving a range of valuable therapeutic behaviors. These offer to augment existing means
of drug delivery as well as tools for research and drug discovery pipelines. Though significant technical progress has
been made in mimicking several advantageous features of living systems, the integration of these features remains a
challenge, as do the development and manufacturing of such systems. Given recent progress, the vision of a synthetic
cell that can identify and ameliorate disease in a programmable manner without adding risk of adverse effects looks less
like a moonshot than an inevitable next step for medicine.
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